Nội dung chính
Xem Hàm bốn trong python 2024
Tôi muốn sử dụng tích hợp. quad với một mảng nhưng nó trả về cho tôi. “Lỗi loại. chỉ các mảng có kích thước 1 mới có thể được chuyển đổi thành vô hướng Python”
Tôi hiểu rằng đối số đầu tiên được yêu cầu phải là một số vô hướng. Nhưng đối số tôi muốn sử dụng đến từ một hàm phụ thuộc vào một tham số và trả về một mảng và tôi không thể khắc phục sự cố
Đây là kịch bản của tôi trong Python
from scipy import integrate as intg
DfH_ref_jp = np.array([0,-393.52,-110.53,-74.87,-241.83,0]) *1000
n_jp = np.array([1.2,0.2,0.15,0.001,0.49,0.30])
Tref = 1298
Ta = 1310
def c_jp(T):
t = T/1000
XC = np.array([1,t,t**2,t**3,t**(-2)])
Mah = M_ah(T) # a matrix defined before
c = np.dot(Mah[:,:5],XC)
return c
H1_jp = n_jp * (DfH_ref_jp + intg.quad(c_jp,Tref,Ta)[0]) # this where it doesn't work / [0] because intg.quad returns an array and I want the first value
Vì vậy, tôi đã thử với một hàm trả về vô hướng
def c_jp0(T):
t = T/1000
XC = np.array([1,t,t**2,t**3,t**(-2)])
Mah = M_ah(T)
c = np.dot(Mah[0,:5],XC)
return c
H1_jp = np.zeros(6, dtype=float)
H1_jp[0] = n_jp[0] * (DfH_ref_jp[0] + intg.quad(c_jp0,Tref,Ta)[0])
Nó hoạt động nhưng tôi không muốn chỉ định 6 chức năng. c_jp0. c_jp6. Có ai có một ý tưởng làm thế nào để làm điều đó?
help(scipy.integrate.odeint)
sẽ hiển thị
Help on function odeint in module scipy.integrate.odepack:
odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)
Integrate a system of ordinary differential equations.
Solve a system of ordinary differential equations using lsoda from the
FORTRAN library odepack.
Solves the initial value problem for stiff or non-stiff systems
of first order ode-s::
dy/dt = func(y, t0, ...)
where y can be a vector.
*Note*: The first two arguments of ``func(y, t0, ...)`` are in the
opposite order of the arguments in the system definition function used
by the `scipy.integrate.ode` class.
Parameters
----------
func : callable(y, t0, ...)
Computes the derivative of y at t0.
y0 : array
Initial condition on y (can be a vector).
t : array
A sequence of time points for which to solve for y. The initial
value point should be the first element of this sequence.
args : tuple, optional
Extra arguments to pass to function.
Dfun : callable(y, t0, ...)
Gradient (Jacobian) of `func`.
col_deriv : bool, optional
True if `Dfun` defines derivatives down columns (faster),
otherwise `Dfun` should define derivatives across rows.
full_output : bool, optional
True if to return a dictionary of optional outputs as the second output
printmessg : bool, optional
Whether to print the convergence message
Returns
-------
y : array, shape (len(t), len(y0))
Array containing the value of y for each desired time in t,
with the initial value `y0` in the first row.
infodict : dict, only returned if full_output == True
Dictionary containing additional output information
======= ============================================================
key meaning
======= ============================================================
'hu' vector of step sizes successfully used for each time step.
'tcur' vector with the value of t reached for each time step.
(will always be at least as large as the input times).
'tolsf' vector of tolerance scale factors, greater than 1.0,
computed when a request for too much accuracy was detected.
'tsw' value of t at the time of the last method switch
(given for each time step)
'nst' cumulative number of time steps
'nfe' cumulative number of function evaluations for each time step
'nje' cumulative number of jacobian evaluations for each time step
'nqu' a vector of method orders for each successful step.
'imxer' index of the component of largest magnitude in the
weighted local error vector (e / ewt) on an error return, -1
otherwise.
'lenrw' the length of the double work array required.
'leniw' the length of integer work array required.
'mused' a vector of method indicators for each successful time step:
1: adams (nonstiff), 2: bdf (stiff)
======= ============================================================
Other Parameters
----------------
ml, mu : int, optional
If either of these are not None or non-negative, then the
Jacobian is assumed to be banded. These give the number of
lower and upper non-zero diagonals in this banded matrix.
For the banded case, `Dfun` should return a matrix whose
rows contain the non-zero bands (starting with the lowest diagonal).
Thus, the return matrix `jac` from `Dfun` should have shape
``(ml + mu + 1, len(y0))`` when ``ml >=0`` or ``mu >=0``.
The data in `jac` must be stored such that ``jac[i - j + mu, j]``
holds the derivative of the `i`th equation with respect to the `j`th
state variable. If `col_deriv` is True, the transpose of this
`jac` must be returned.
rtol, atol : float, optional
The input parameters `rtol` and `atol` determine the error
control performed by the solver. The solver will control the
vector, e, of estimated local errors in y, according to an
inequality of the form ``max-norm of (e / ewt) <= 1``,
where ewt is a vector of positive error weights computed as
``ewt = rtol * abs(y) + atol``.
rtol and atol can be either vectors the same length as y or scalars.
Defaults to 1.49012e-8.
tcrit : ndarray, optional
Vector of critical points (e.g. singularities) where integration
care should be taken.
h0 : float, (0: solver-determined), optional
The step size to be attempted on the first step.
hmax : float, (0: solver-determined), optional
The maximum absolute step size allowed.
hmin : float, (0: solver-determined), optional
The minimum absolute step size allowed.
ixpr : bool, optional
Whether to generate extra printing at method switches.
mxstep : int, (0: solver-determined), optional
Maximum number of (internally defined) steps allowed for each
integration point in t.
mxhnil : int, (0: solver-determined), optional
Maximum number of messages printed.
mxordn : int, (0: solver-determined), optional
Maximum order to be allowed for the non-stiff (Adams) method.
mxords : int, (0: solver-determined), optional
Maximum order to be allowed for the stiff (BDF) method.
See Also
--------
ode : a more object-oriented integrator based on VODE.
quad : for finding the area under a curve.
Examples
--------
The second order differential equation for the angle `theta` of a
pendulum acted on by gravity with friction can be written::
theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0
where `b` and `c` are positive constants, and a prime (') denotes a
derivative. To solve this equation with `odeint`, we must first convert
it to a system of first order equations. By defining the angular
velocity ``omega(t) = theta'(t)``, we obtain the system::
theta'(t) = omega(t)
omega'(t) = -b*omega(t) - c*sin(theta(t))
Let `y` be the vector [`theta`, `omega`]. We implement this system
in python as:
>>> def pend(y, t, b, c):
.. theta, omega = y
.. dydt = [omega, -b*omega - c*np.sin(theta)]
.. return dydt
...
We assume the constants are `b` = 0.25 and `c` = 5.0:
>>> b = 0.25
>>> c = 5.0
For initial conditions, we assume the pendulum is nearly vertical
with `theta(0)` = `pi` - 0.1, and it initially at rest, so
`omega(0)` = 0. Then the vector of initial conditions is
>>> y0 = [np.pi - 0.1, 0.0]
We generate a solution 101 evenly spaced samples in the interval
0 <= `t` <= 10. So our array of times is:
>>> t = np.linspace(0, 10, 101)
Call `odeint` to generate the solution. To pass the parameters
`b` and `c` to `pend`, we give them to `odeint` using the `args`
argument.
>>> from scipy.integrate import odeint
>>> sol = odeint(pend, y0, t, args=(b, c))
The solution is an array with shape (101, 2). The first column
is `theta(t)`, and the second is `omega(t)`. The following code
plots both components.
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, sol[:, 0], 'b', label='theta(t)')
>>> plt.plot(t, sol[:, 1], 'g', label='omega(t)')
>>> plt.legend(loc='best')
>>> plt.xlabel('t')
>>> plt.grid()
>>> plt.show()
Scipy quad sử dụng phương pháp nào?
Gói phụ và chức năng nào được sử dụng để tích hợp đơn lẻ trong Scipy?
Gói phụ và chức năng tương ứng nào được sử dụng để tích hợp kép trong Scipy?
Bạn đang tìm hiểu bài viết: Hàm bốn trong python 2024
HỆ THỐNG CỬA HÀNG TRÙM SỈ QUẢNG CHÂU
Điện thoại: 092.484.9483
Zalo: 092.484.9483
Facebook: https://facebook.com/giatlathuhuongcom/
Website: Trumsiquangchau.com
Địa chỉ: Ngõ 346 Nam Dư, Trần Phú, Hoàng Mai, Hà Nội.